Article,

Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress

, , and .
FUNCTIONAL PLANT BIOLOGY, 35 (7): 633-639 (2008)

Abstract

Silicon (Si) is reported to reduce the effect of salinity on wheat (Triticum aestivum L.) and other crops. In the present study, Si decreased plant Na+ uptake and shoot : root Na+ distribution of a salt-resistant as well as a salt-sensitive wheat genotype. Reduced shoot Na+ concentration and increased shoot K+ : Na+ ratio led to improved plant growth. Silicon increased cell-wall Na+ binding from 49% in SARC-1 and 37% in 7-Cerros under salinity to 87% in SARC-1 and 79% in 7-Cerros under salinity + silicon. It may also have resulted in decreased potentially toxic leaf sap Na+ concentration. The concentration of glutathione, an important antioxidant in plants, was increased due to the addition of Si under saline conditions. The salt-resistant wheat genotype SARC-1 was less Si-responsive in terms of shoot fresh weight, having a 39% increase compared with a 49% increase in 7-Cerros, as well as root fresh weight, having a 12% increase compared with a 22% in 7-Cerros.

Tags

Users

  • @pflanzenern

Comments and Reviews