Misc,

A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and .
(2012)cite arxiv:1204.2305Comment: Submitted to the Nature Journal. 39 Pages, 13 figures.

Abstract

The early Universe at redshift z\sim6-11 marks the reionization of the intergalactic medium, following the formation of the first generation of stars. However, those young galaxies at a cosmic age of 500 million years (Myr, at z 10) remain largely unexplored as they are at or beyond the sensitivity limits of current large telescopes. Gravitational lensing by galaxy clusters enables the detection of high-redshift galaxies that are fainter than what otherwise could be found in the deepest images of the sky. We report the discovery of an object found in the multi-band observations of the cluster MACS1149+22 that has a high probability of being a gravitationally magnified object from the early universe. The object is firmly detected (12 sigma) in the two reddest bands of HST/WFC3, and not detected below 1.2 \mum, matching the characteristics of z\sim9 objects. We derive a robust photometric redshift of z = 9.6 0.2, corresponding to a cosmic age of 490 15Myr (i.e., 3.6% of the age of the Universe). The large number of bands used to derive the redshift estimate make it one of the most accurate estimates ever obtained for such a distant object. The significant magnification by cluster lensing (a factor of \sim15) allows us to analyze the object's ultra-violet and optical luminosity in its rest-frame, thus enabling us to constrain on its stellar mass, star-formation rate and age. If the galaxy is indeed at such a large redshift, then its age is less than 200 Myr (at the 95% confidence level), implying a formation redshift of zf 14. The object is the first z>9 candidate that is bright enough for detailed spectroscopic studies with JWST, demonstrating the unique potential of galaxy cluster fields for finding highly magnified, intrinsically faint galaxies at the highest redshifts.

Tags

Users

  • @miki

Comments and Reviews