Article,

Review of the vapour pressures of ice and supercooled water for atmospheric applications

, and .
Quarterly Journal of the Royal Meteorological Society, 131 (608): 1539-1565 (2005)Cited Reference Count: 90 Cited References: *CHEM RUBB CO, 2002, HDB CHEM PHYS *SMITHS, 1951, SMITHS MET TABVL *SMITHS, 2003, SMITHS PHYS TABL *WMO, 1988, 49 WMO *WMO, 2000, 49 WMO ANGELL CA, 1982, J PHYS CHEM-US, V86, P998 ANGELL CA, 1982, WATER COMPREHENSIVE, P1 ARCHER DG, 2000, J PHYS CHEM B, V104, P8563 BARTELL LS, 1997, J PHYS CHEM B, V101, P7573 BELLISSENTFUNEL MC, 1992, J CHEM PHYS, V97, P1282 BELLISSENTFUNEL MC, 1995, J CHEM PHYS, V102, P3727 BOTTOMLEY GA, 1978, AUST J CHEM, V31, P1177 BREWER AW, 1948, P PHYS SOC LOND, V60, P52 BRUGGELLER P, 1980, NATURE, V288, P569 BRYSON CE, 1974, J CHEM ENG DATA, V19, P107 BUCK AL, 1981, J APPL METEOROL, V20, P1527 CHAIX L, 1998, J PHYS CHEM A, V102, P10300 CLEGG SL, 1995, J CHEM ENG DATA, V40, P43 CLEGG SL, 1998, J PHYS CHEM A, V102, P2137 CZICZO DJ, 2001, GEOPHYS RES LETT, V28, P963 DEBENEDETTI PG, 2003, J PHYS-CONDENS MAT, V15, R1669 DEMOTT PJ, 2003, P NATL ACAD SCI USA, V100, P14655 ELIASSEN A, 1978, B AM METEOROL SOC, V59, P387 FEISTEL R, 2005, IN PRESS J MAR RES FLUBACHER P, 1960, J CHEM PHYS, V33, P1751 FRIEDMAN AS, 1954, J CHEM PHYS, V22, P2051 FUKUTA N, 2003, J ATMOS SCI, V60, P1871 GAO RS, 2004, SCIENCE, V303, P516 GIAUQUE WF, 1936, J AM CHEM SOC, V58, P1144 GIERENS KM, 2003, J GEOPHYS RES-ATMOS, V108 GOFF JA, 1946, T AM SOC HEATING VEN, V52, P95 GOFF JA, 1957, SOC HEATING AIR COND, V63, P347 GOFF JA, 1965, HUMIDITY MOISTURE ME, V3 GUEYMARD C, 1993, J APPL METEOROL, V32, P1294 GUILDNER LA, 1976, J RES NBS, V80, P505 HAAG W, 2003, ATMOS CHEM PHYS DISC, V3, P3267 HANDA YP, 1986, J CHEM PHYS, V84, P7009 HARVEY AH, 2004, J PHYS CHEM REF DATA, V33, P369 HEYMSFIELD AJ, 1998, GEOPHYS RES LETT, V25, P1343 HOBBS PV, 1974, ICE PHYS HYLAND RW, 1975, J RES NBS A PHYS CH, V79, P551 HYLAND RW, 1983, ASHRAE T, V89, P500 JANCSO G, 1970, J PHYS CHEM-US, V74, P2984 JOHARI GP, 1994, J PHYS CHEM-US, V98, P4719 KELLY KK, 1993, J GEOPHYS RES-ATMOSP, V98, P8713 KEYSER LF, 1993, MICROSC RES TECHNIQ, V25, P434 KJAERGAARD HG, 2003, J PHYS CHEM A, V107, P10680 KLEY D, 2000, 2 SPARC WORLD CLIM R KOHL I, 2000, PHYS CHEM CHEM PHYS, V2, P1579 KOOP T, 2000, NATURE, V406, P611 KOUCHI A, 1987, NATURE, V330, P550 KRAUS GF, 1984, J PHYS CHEM-US, V88, P4781 LIN RF, 2002, J ATMOS SCI, V59, P2305 MARTI J, 1993, GEOPHYS RES LETT, V20, P363 MAUERSBERGER K, 2003, GEOPHYS RES LETT, V30 MAYER E, 1987, NATURE, V325, P601 MCDONALD JE, 1965, J GEOPHYS RES, V70, P1553 MCMILLAN JA, 1965, NATURE, V206, P806 MILOSHEVICH LM, 2001, J ATMOS OCEAN TECH, V18, P135 MISHIMA O, 1998, NATURE, V396, P329 MURPHY DM, 2003, GEOPHYS RES LETT, V30 OSBORNE NS, 1939, J RES NAT BUR STAND, V23, P197 OSBORNE NS, 1939, J RES NAT BUR STAND, V23, P643 PARSONS MT, 2004, J GEOPHYS RES-ATMOS, V109 POOLE PH, 1992, NATURE, V360, P324 POOLE PH, 1994, PHYS REV LETT, V73, P1632 PRUPPACHER HR, 1997, MICROPHYSICS CLOUDS REBELO LPN, 1998, J CHEM PHYS, V109, P626 SASTRY S, 1996, PHYS REV E B, V53, P6144 SCHEEL K, 1909, ANN PHYS-BERLIN, V29, P723 SONNTAG D, 1990, Z METEOROL, V70, P340 SPEEDY RJ, 1976, J CHEM PHYS, V65, P851 SPEEDY RJ, 1982, J PHYS CHEM-US, V86, P982 SPEEDY RJ, 1996, J CHEM PHYS, V105, P240 STARR FW, 2003, PHYSICA A, V323, P51 SUGISAKI M, 1968, B CHEM SOC JPN, V41, P2591 TANAKA H, 1998, J CHEM PHYS, V108, P4887 TOMBARI E, 1999, CHEM PHYS LETT, V300, P749 TUCK AF, 2004, J GEOPHYS RES-ATMOS, V109 WAGNER W, 1993, J PHYS CHEM REF DATA, V16, P893 WAGNER W, 1993, J PHYS CHEM REF DATA, V22, P783 WAGNER W, 1994, J PHYS CHEM REF DATA, V23, P515 WAGNER W, 2002, J PHYS CHEM REF DATA, V31, P387 WASHBURN EW, 1924, MON WEATHER REV, V52, P488 WEBER S, 1915, COMMUNITY PHYS LAB U, V150 WEXLER A, 1976, J RES NBS A PHYS CH, V80, P775 WEXLER A, 1977, J RES NBS A PHYS CH, V81, P5 WEXLER A, 1983, THERMODYNAMIC PROPER WEXLER AS, 2002, J GEOPHYS RES, V107, D14 WRIGHT LM, 1997, J FAMILY NURSING, V3, P3 Part B.

Abstract

The vapour pressures of ice and supercooled water are reviewed with an emphasis on atmospheric applications. Parametrizations are given for the vapour pressure, molar heat capacity, and latent heat of vaporization of both ice and liquid water. For ice, the experimental vapour pressure data are in agreement with a derivation from the Clapeyron equation. Below 200 K cubic ice may affect the vapour pressure of ice both in the atmosphere and in the laboratory. All of the commonly used parametrizations for the vapour pressure of supercooled water are extrapolations that were not originally intended for use below the freezing point. In addition, the World Meteorological Organization definition of the vapour pressure of supercooled water contains an easily overlooked typographical error. Recent data on the molar heat capacity Of Supercooled water are used to derive its vapour pressure. Nevertheless, the uncertainty is such that measurements of the deliquescence and freezing behaviour of aerosol particles are beginning to be limited by uncertainties in the thermodynamics of supercooled water.

Tags

Users

  • @bobsica

Comments and Reviews