Article,

Icy particles in the summer mesopause region: Three-dimensional modeling of their environment and two-dimensional modeling of their transport

, and .
Journal of Geophysical Research-Space Physics, (2002)Cited References: ALPERS M, 2000, J GEOPHYS RES-ATMOS, V105, P12235 BALSLEY BB, 1983, J ATMOS SCI, V40, P2451 BERGER U, 1999, J GEOPHYS RES-ATMOS, V104, P22083 BOHREN CF, 1983, ABSORPTION SCATTERIN BOTT A, 1989, MON WEATHER REV, V117, P1006 BOTT A, 1992, MON WEATHER REV, V120, P2592 CARBARY JF, 2001, GEOPHYS RES LETT, V28, P2605 CARBARY JF, 2001, GEOPHYS RES LETT, V28, P725 CHAPMAN S, 1965, Q J R METEOROL SOC, V91, P115 CHU XZ, 2001, GEOPHYS RES LETT, V28, P1937 CZECHOWSKY P, 1997, ANN GEOPHYS-ATM HYDR, V15, P1028 DONAHUE TM, 1972, J ATMOS SCI, V29, P1205 GADSDEN M, 1982, SPACE SCI REV, V33, P279 GADSDEN M, 1989, NOCTILUCENT CLOUDS GADSDEN M, 1998, J ATMOS SOL-TERR PHY, V60, P1763 GARCIA RR, 1985, J GEOPHYS RES-ATMOSP, V90, P3850 GARCIA RR, 1989, J GEOPHYS RES-ATMOSP, V94, P14605 HALE BN, 1974, J CHEM PHYS, V61, P4012 HARTOGH P, 2000, 27 EUR ANN M ATM STU HAVNES O, 1996, J GEOPHYS RES-SPACE, V101, P10839 HAVNES O, 2001, GEOPHYS RES LETT, V28, P1419 HERVIG M, 2001, GEOPHYS RES LETT, V28, P971 HESSTVEDT E, 1961, J GEOPHYS RES, V66, P1985 HOCKING WK, 1990, ADV SPACE RES, V10, P153 HOFFMANN P, 1999, GEOPHYS RES LETT, V26, P1525 HOFFMANN P, 2002, J ATMOS SOL-TERR PHY, V64, P1229 HOLTON JR, 1984, J ATMOS SCI, V41, P2653 HUNTEN DM, 1980, J ATMOS SCI, V37, P1342 INHESTER B, 1994, J GEOPHYS RES-ATMOS, V99, P20937 JENSEN E, 1989, THESIS U COLO BOULDE JENSEN EJ, 1988, J GEOPHYS RES, V93, P2461 KLOSTERMEYER J, 1998, J GEOPHYS RES-ATMOS, V103, P28743 KLOSTERMEYER J, 2001, J GEOPHYS RES-ATMOS, V106, P9749 KORNER U, 2001, J GEOPHYS RES-ATMOS, V106, P9639 LOVE SG, 1993, SCIENCE, V262, P550 LUBKEN FJ, 1996, J GEOPHYS RES-ATMOS, V101, P9489 LUBKEN FJ, 1997, J GEOPHYS RES-ATMOS, V102, P13441 LUBKEN FJ, 1998, GEOPHYS RES LETT, V25, P893 LUBKEN FJ, 1999, J GEOPHYS RES-ATMOS, V104, P9135 LUBKEN FJ, 2002, J GEOPHYS RES, V107, P1615, DOI 10.1029/2001JD000915 MCINTYRE ME, 1989, J GEOPHYS RES-ATMOSP, V94, P14617 MITCHELL JD, 2001, GEOPHYS RES LETT, V28, P1423 MOORE WJ, 1975, PHYSICAL CHEM, P161 NASTROM GD, 1982, GEOPHYS RES LETT, V9, P139 NUSSBAUMER V, 1996, J GEOPHYS RES-ATMOS, V101, P19161 REID GC, 1975, J ATMOS SCI, V32, P523 ROSINSKI J, 1961, J METEOROL, V18, P736 RUSTER R, 1992, ADV SPACE RES, V12, P1085 SEELE C, 1999, GEOPHYS RES LETT, V26, P1517 STEBEL K, 2000, GEOPHYS RES LETT, V27, P661 SUGIYAMA T, 1996, GEOPHYS RES LETT, V23, P653 SUMMERS ME, 2001, GEOPHYS RES LETT, V28, P3601 THAYER J, 2001, UNPUB J GEOPHYS RES THAYER JP, 1995, GEOPHYS RES LETT, V22, P2961 THOMAS GE, 1985, PLANET SPACE SCI, V33, P1209 THRANE EV, 1985, J ATMOS TERR PHYS, V47, P243 TOLMAN RC, 1949, J CHEM PHYS, V17, P333 TURCO RP, 1982, PLANET SPACE SCI, V30, P1147 VONCOSSART G, 1999, ESA, P299 VONCOSSART G, 1999, GEOPHYS RES LETT, V26, P1513 VONZAHN U, 1989, J GEOPHYS RES-ATMOSP, V94, P14647 VONZAHN U, 1998, GEOPHYS RES LETT, V25, P1289 VONZAHN U, 1999, GEOPHYS RES LETT, V26, P1521 VONZAHN U, 2000, ANN GEOPHYS-ATM HYDR, V18, P815.

Abstract

1 In summertime, layers of icy particles form in the high-latitude mesopause region, causing the phenomena of noctilucent clouds and polar mesosphere summer echoes. We study the formation of these layers by means of a 3-D general circulation model of the middle atmosphere (COMMA/IAP) including new modules for the mesospheric chemistry and for the microphysics of icy particles. We initialize the mesopause region with an ensemble of two million particles and investigate their time-dependent transport in a 2-D Lagrangian way. We use the model to study in considerable detail ice particle formation by heterogeneous nucleation on smoke particles, freeze-drying of the mesopause region by formation of ice particles, and the influences of tidal waves and particle eddy diffusion on ice particle and noctilucent cloud (NLC) layer behavior. We present model results on the requirements for adequate size of smoke particles to act as condensation nuclei in the mesopause region (directly after initialization > 0.7 nm radius; after 8 hours > 2 nm), the types of ice particle trajectories, the timescale for growth of particles (6 to 8 hours to radii > 20 nm) and sublimation of ice particles (duration of sublimation phase typically 6 hours), the typical altitude range of maximum NLC brightness (82.5-83.0 km), the size distributions of ice particles (closer to Gaussian than lognormal in shape), the importance of the vertical component of the tidal winds on NLC layer behavior, and the dominance of semidiurnal over diurnal tidal effects. Furthermore, the model allows us to make predictions on a number of NLC features that are either currently under study or may become observable in the near future, such as properties of NLC at high arctic latitudes, and the development of layers with strongly enhanced water vapor mixing ratios near the lower border of the NLCs.

Tags

Users

  • @bobsica

Comments and Reviews