Article,

Characterization of two novel redox groups in the respiratory NADH:ubiquinone oxidoreductase (complex I).

, , , , , , , , and .
Biochim Biophys Acta, 1459 (2-3): 305--309 (August 2000)

Abstract

The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and mitochondria of most eukaryotes. The bacterial complex consists of 14 different subunits. Seven peripheral subunits bear all known redox groups of complex I, namely one FMN and five EPR-detectable iron-sulfur (FeS) clusters. The remaining seven subunits are hydrophobic proteins predicted to fold into 54 alpha-helices across the membrane. Little is known about their function, but they are most likely involved in proton translocation. The mitochondrial complex contains in addition to the homologues of these 14 subunits at least 29 additional proteins that do not directly participate in electron transfer and proton translocation. A novel redox group has been detected in the Neurospora crassa complex, in an amphipathic fragment of the Escherichia coli complex I and in a related hydrogenase and ferredoxin by means of UV/Vis spectroscopy. This group is made up by the two tetranuclear FeS clusters located on NuoI (the bovine TYKY) which have not been detected by EPR spectroscopy yet. Furthermore, we present evidence for the existence of a novel redox group located in the membrane arm of the complex. Partly reduced complex I equilibrated to a redox potential of -150 mV gives a UV/Vis redox difference spectrum that cannot be attributed to the known cofactors. Electrochemical titration of this absorption reveals a midpoint potential of -80 mV. This group is believed to transfer electrons from the high potential FeS cluster to ubiquinone.

Tags

Users

  • @bbrors

Comments and Reviews