Article,

Brainstem size and function at term age in relation to later neurosensory disability in high-risk, preterm infants.

, , , , , and .
Acta Paediatr, 90 (8): 909--915 (August 2001)

Abstract

The aim of this study was to measure brainstem size on magnetic resonance imaging (MRI) scans of high-risk. preterm infants, to assess brainstem function by brainstem auditory-evoked potentials (BAEP) and to determine the predictive value of these measures for the neurosensory outcome. A total of 51 preterm infants (gestational age <34 wk, birthweight <1,500 g) underwent examinations at term age; neuromotor outcome and hearing were followed up until a corrected age of 18 mo. Fourteen (27\%) infants had neurosensory disability. Those with a later neurosensory disability had a significantly smaller brain stem than those with a normal outcome. The preterm infants had significantly longer peak latency (L) V and interpeak latency (IPL) III-V than the full-term control infants. Most of the preterm infants with severe cerebral palsy or hearing loss had abnormal BAEP. Sensitivity of morphometric dimensions for predicting neurosensory disability was only 20-31\%, but specificity was 97-100\%. Abnormal L I and IPL III-V in BAEP predicted disability with a sensitivity of 93\% and a specificity of 57-59\%. CONCLUSION: We conclude that adverse events during the perinatal period may lead to morphofunctional changes in the brain stem in high-risk, preterm infants, and it seems that functional changes are accurate in predicting neurosensory disability in such patients.

Tags

Users

  • @ar0berts

Comments and Reviews