Misc,

On the use of Lyman-alpha to detect Lyman continuum leaking galaxies

, , , and .
(2014)cite arxiv:1404.2958Comment: Submitted to A&A.

Abstract

We propose to infer ionising continuum leaking properties of galaxies by looking at their Lyman-alpha line profiles. We carry out Lyman-alpha radiation transfer calculations in two models of HII regions which are porous to ionising continuum escape: 1) the so-called "density bounded" media, in which massive stars produce enough ionising photons to keep the surrounding interstellar medium transparent to the ionising continuum, i.e almost totally ionised, and 2) "riddled ionisation-bounded" media, surrounded by neutral interstellar medium, but with holes, i.e. with a covering factor lower than unity. The Lyman-alpha spectra emergent from these configurations have distinctive features: 1) a "classical" asymmetric redshifted profile in the first case, but with a small shift of the maximum of the profile compare to the systemic redshift (Vpeak < 150 km/s); 2) a main peak at the systemic redshift in the second case (Vpeak = 0 km/s), with, as a consequence, a non-zero Lyman-alpha flux bluewards the systemic redshift. Assuming that in a galaxy leaking ionising photons, the Lyman-alpha component emerging from the leaking star cluster(s) dominates the total Lyman-alpha spectrum, the Lyman-alpha shape may be used as a pre-selection tool to detect Lyman continuum (LyC) leaking galaxies, in objects with well determined systemic redshift, and high spectral resolution Lyman-alpha spectra (R >= 4000). The examination of a sample of 10 local starbursts with high resolution HST-COS Lyman-alpha spectra and known in the literature as LyC leakers or leaking candidates, corroborates our predictions. Observations of Lyman-alpha profiles at high resolution should show definite signatures betraying the escape of Lyman continuum photons from star-forming galaxies.

Tags

Users

  • @miki

Comments and Reviews