BibSonomy now supports HTTPS. Switch to HTTPS.
@nosebrain

Spam detection in social bookmarking websites

, , , and . 2013 IEEE 4th International Conference on Software Engineering and Service Science, page 56-59. (May 2013)

Abstract

The popularity of social bookmarking systems became attractive to spammers to disturb systems by posting illegal or inappropriate web content links that users do not wish to share. We present a study of automatic detection of spammers in a social tagging system. Several distinct features are extracted that address various properties of social spam, which provide sufficient information to discriminate legitimate against spammer users. So these features are used for various machine learning algorithms to classify, achieving over 99% accuracy in detecting spammers.

Description

Spam detection in social bookmarking websites - IEEE Conference Publication

Links and resources

URL:
BibTeX key:
poorgholami2013detection
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication