Misc,

Probing Outflows in z= 1~2 Galaxies through FeII/FeII* Multiplets

, , , and .
(2014)cite arxiv:1407.0149Comment: 21 pages, 23 Figures, accepted for publication in ApJ.

Abstract

We report on a study of the 2300-2600\AA FeII/FeII* multiplets in the rest-UV spectra of star-forming galaxies at 1.0<z<2.6 as probes of galactic-scale outflows. We extracted a mass-limited sample of 97 galaxies at z~1.0-2.6 from ultra-deep spectra obtained during the GMASS spetroscopic survey in the GOODS South field with the VLT and FORS2. We obtain robust measures of the rest equivalent width of the FeII absorption lines down to a limit of W_r>1.5 \AA and of the FeII* emission lines to W_r>0.5 \AA. Whenever we can measure the systemic redshift of the galaxies from the OII emission line, we find that both the FeII and MgII absorption lines are blueshifted, indicative that both species trace gaseous outflows. We also find, however, that the FeII gas has generally lower outflow velocity relative to that of MgII. We investigate the variation of FeII line profiles as a function of the radiative transfer properties of the lines, and find that transitions with higher oscillator strengths are more blueshifted in terms of both line centroids and line wings. We discuss the possibility that FeII lines are suppressed by stellar absorptions. The lower velocities of the FeII lines relative to the MgII doublet, as well as the absence of spatially extended FeII* emission in 2D stacked spectra, suggest that most clouds responsible for the FeII absorption lie close (3~4 kpc) to the disks of galaxies. We show that the FeII/FeII* multiplets offer unique probes of the kinematic structure of galactic outflows.

Tags

Users

  • @miki

Comments and Reviews