Abstract

Using a majorization technique that identifies the maximal and minimal vectors of a variety of subsets of \$\$\\backslashmathbb\R\^\n\\\$\$ , we find upper and lower bounds for the Kirchhoff index K(G) of an arbitrary simple connected graph G that improve those existing in the literature. Specifically we show that \$\$K(G) \backslashgeq \backslashfrac\n\\d\_\1\\ \backslashleft \backslashfrac\1\\1+\backslashfrac\\backslashsigma\\\backslashsqrt\n-1\\\ + \backslashfrac\(n-2)^\2\\\n-1-\backslashfrac\\backslashsigma\\\backslashsqrt\n-1\\\\backslashright ,\$\$ where d 1 is the largest degree among all vertices in G, \$\$\backslashsigma ^\2\ = \backslashfrac\2\\n\ \backslashsum\_\(i, j) \backslashin E\ \backslashfrac\1\\d\_ı\d\_\j\\ = \backslashleft( \backslashfrac\2\\n\\backslashright) R\_\-1\(G),\$\$ and R −1(G) is the general Randić index of G for \$\$\\backslashalpha =-1\\$\$ . Also we show that \$\$K(G) \backslashleq \backslashfrac\n\\d\_\n\\\backslashleft( \backslashfrac\n-k-2\\1-\backslashlambda \_\2\\+\backslashfrac\k\\2\+\backslashfrac\1\\\backslashtheta\\backslashright) ,\$\$ where d n is the smallest degree, \$\$\\backslashlambda \_\2\\\$\$ is the second eigenvalue of the transition probability of the random walk on G, \$\$k = \backslashleft \backslashlfloor \backslashfrac\\backslashlambda \_\2\ \backslashleft( n-1\backslashright) +1\\\backslashlambda \_\2\+1\\backslashright\backslashrfloor \\backslashrm and\\backslashquad\backslashtheta = \backslashlambda \_\2\ \backslashleft( n-k-2\backslashright) -k+2.\$\$

Description

Bounds for the Kirchhoff index via majorization techniques | SpringerLink

Links and resources

Tags