@miki

The Global Evolution of Giant Molecular Clouds II: The Role of Accretion

, , , and . (2011)cite arxiv:1105.6097 Comment: 23 Pages, 9 Figures. Resubmitted to ApJ with referee comments. Comments are welcome.

Abstract

We present virial models for the global evolution of giant molecular clouds. Focusing on the presence of an accretion flow, and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual giant molecular clouds. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50 - 100 Msun pc^-2, in good agreement with observations of giant molecular clouds in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of giant molecular clouds and associated young star clusters in the LMC and find good agreement between our model clouds and the observed relationship between H ii regions, young star clusters, and giant molecular clouds.

Description

[1105.6097] The Global Evolution of Giant Molecular Clouds II: The Role of Accretion

Links and resources

Tags