BibSonomy now supports HTTPS. Switch to HTTPS.

Spam detection in social bookmarking websites
, , , and .
2013 IEEE 4th International Conference on Software Engineering and Service Science, page 56-59. (May 2013)

The popularity of social bookmarking systems became attractive to spammers to disturb systems by posting illegal or inappropriate web content links that users do not wish to share. We present a study of automatic detection of spammers in a social tagging system. Several distinct features are extracted that address various properties of social spam, which provide sufficient information to discriminate legitimate against spammer users. So these features are used for various machine learning algorithms to classify, achieving over 99% accuracy in detecting spammers.
  • @nosebrain
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).