Article,

Topology, geometry and quantum interference in condensed matter physics

.
(2017)cite arxiv:1708.07192Comment: lecture notes, 44 pages.

Abstract

The methods of quantum field theory are widely used in condensed matter physics. In particular, the concept of an effective action was proven useful when studying low temperature and long distance behavior of condensed matter systems. Often the degrees of freedom which appear due to spontaneous symmetry breaking or an emergent gauge symmetry, have non-trivial topology. In those cases, the terms in the effective action describing low energy degrees of freedom can be metric independent (topological). We consider a few examples of topological terms of different types and discuss some of their consequences. We will also discuss the origin of these terms and calculate effective actions for several fermionic models. In this approach, topological terms appear as phases of fermionic determinants and represent quantum anomalies of fermionic models. In addition to the wide use of topological terms in high energy physics, they appeared to be useful in studies of charge and spin density waves, Quantum Hall Effect, spin chains, frustrated magnets, topological insulators and superconductors, and some models of high-temperature superconductivity.

Tags

Users

  • @vindex10

Comments and Reviews