Article,

A quarter-century of satellite polar mesospheric cloud observations

, , , and .
Journal of Atmospheric And Solar-Terrestrial Physics, 68 (1): 9-29 (2006)ISI Document Delivery No.: 002TQ Times Cited: 8 Cited Reference Count: 108 Cited References: AKMAEV RA, 2000, GEOPHYS RES LETT, V27, P2113 ALFRED JM, 2001, EOS T AGU, V82, S284 BAILEY SM, 2005, J GEOPHYS RES-ATMOS, V110 BARTH CA, 1983, GEOPHYS RES LETT, V10, P237 BARTH CA, 2003, J GEOPHYS RES-SPACE, V108 BEIG G, 2003, REV GEOPHYS, V41 BURTON SP, 2000, P QUADR OZ S SAPP JA, P325 CARBARY JF, 1999, J GEOPHYS RES-SPACE, V104, P10089 CARBARY JF, 2001, GEOPHYS RES LETT, V28, P725 CARBARY JF, 2004, GEOPHYS RES LETT, V31 CHANDRA S, 1997, GEOPHYS RES LETT, V24, P639 CHU X, 2001, GEOPHYS RES LETT, V26, P1937 DEBRESTIAN DJ, 1997, ADV SPACE RES, V19, P587 DEBRESTIAN DJ, 1997, J GEOPHYS RES-ATMOS, V102, P1971 DELAND MT, 2001, J ATMOS OCEAN TECH, V18, P914 DELAND MT, 2003, J GEOPHYS RES-ATMOS, V108 DELAND MT, 2005, UNPUB GEOPHYSICAL RE DONAHUE TM, 1972, J ATMOS SCI, V30, P515 EVANS WFJ, 1995, GEOPHYS RES LETT, V22, P2793 FIEDLER J, 2003, J GEOPHYS RES-ATMOS, V108 FLEMING EL, 1995, J ATMOS TERR PHYS, V57, P333 FOGLE B, 1973, CLIMATOLOGICAL RES, P263 FRENCH WJR, 2004, J ATMOS SOL-TERR PHY, V66, P493 GADSDEN M, 1989, NOCTILUCENT CLOUDS GADSDEN M, 1998, J ATMOS SOL-TERR PHY, V60, P1163 GADSDEN M, 2000, J ATMOS SOL-TERR PHY, V62, P31 GADSDEN M, 2002, MEMOIRS BRIT ASTRONO, V45 GARCIA RR, 1989, J GEOPHYS RES-ATMOSP, V94, P14605 GAVINE D, 2002, MEMOIRS BRIT ASTRONO, V45 GELINAS LJ, 2005, J GEOPHYS RES, V110, A1310 GERRARD AJ, 2004, J ATMOS SOL-TERR PHY, V66, P229 GLACCUM W, 1996, J GEOPHYS RES-ATMOS, V101, P14479 GOLDBERG RA, 2001, GEOPHYS RES LETT, V28, P1407 GOLITSYN GS, 1996, GEOPHYS RES LETT, V23, P1741 GRUZDEV AN, 2005, J GEOPHYS RES, V110, D3304 HERNANDEZ G, 2003, GEOPHYS RES LETT, V30 HERVIG M, 2001, GEOPHYS RES LETT, V28, P971 HERVIG M, 2003, GEOPHYS RES LETT, V30 HUANG TYW, 1993, J GEOPHYS RES-ATMOSP, V98, P20413 HUNTEN DM, 1980, J ATMOS SCI, V37, P1342 JENSEN E, 1989, J GEOPHYS RES-ATMOSP, V94, P14693 JOINER J, 1996, J GEOPHYS RES-SPACE, V101, P5239 KALASHNIKOVA O, 2000, GEOPHYS RES LETT, V27, P3293 KHOSRAVI R, 2002, J GEOPHYS RES-ATMOS, V107 KIRKWOOD S, 2002, GEOPHYS RES LETT, V29 KIRKWOOD S, 2003, J GEOPHYS RES-ATMOS, V108 KLOSTERMEYER J, 2001, J GEOPHYS RES-ATMOS, V106, P9749 KLOSTERMEYER J, 2002, J GEOPHYS RES-ATMOS, V107 LESLIE RJ, 1918, NATURE, V33, P245 LLEWELLYN E, 2004, CAN J PHYS, V82, P411 LUBKEN FJ, 2000, GEOPHYS RES LETT, V27, P3603 LUBKEN FJ, 2004, J GEOPHYS RES-ATMOS, V109 LUCKE RL, 1999, J GEOPHYS RES-ATMOS, V104, P18785 MARSH D, 2003, J GEOPHYS RES-ATMOS, V108 MAULDIN LE, 1985, OPT ENG, V24, P307 MCHUGH M, 2003, GEOPHYS RES LETT, V30 MEIER RR, 1991, SPACE SCI REV, V58, P1 MERKEL AW, 2003, GEOPHYS RES LETT, V30 MURRAY BJ, 2003, PHYS CHEM CHEM PHYS, V5, P4129 NEDOLUHA GE, 2003, J GEOPHYS RES-ATMOS, V108 OFFERMANN D, 2004, J ATMOS SOL-TERR PHY, V66, P437 OLIVERO JJ, 1986, J ATMOS SCI, V43, P1263 OLIVERO JJ, 2001, ADV SPACE RES, V28, P931 OLTMANS SJ, 2000, GEOPHYS RES LETT, V27, P3453 ONEIL RR, 2001, EOS T AGU SPR M S, V82 PORTMANN RW, 1995, GEOPHYS RES LETT, V22, P1733 RANDEL WJ, 2004, J ATMOS SCI, V61, P2133 RAPP M, 2003, J GEOPHYS RES-ATMOS, V108 REMSBERG EE, 2002, J GEOPHYS RES-ATMOS, V107 ROBLE RG, 1989, GEOPHYS RES LETT, V16, P1441 ROMEJKO VA, 2003, J GEOPHYS RES-ATMOS, V108 ROSENLOF KH, 2001, GEOPHYS RES LETT, V28, P1195 ROTTMAN G, 2004, GEOPH MONOG SERIES, V141, P111 RUSCH DW, 1991, J GEOPHYS RES-ATMOSP, V96, P12933 RUSSELL JM, 1993, J GEOPHYS RES-ATMOSP, V98, P10777 SEELE C, 1999, GEOPHYS RES LETT, V26, P1517 SHEPHERD GG, 1993, J GEOPHYS RES-ATMOSP, V98, P10725 SHEPHERD MG, 2004, J GEOPHYS RES-ATMOS, V109 SHETTLE EP, 2002, J GEOPHYSICAL RES, V107 SHETTLE EP, 2002, MEMOIRS BRIT ASTRONO, V45 SISKIND DE, 2003, J GEOPHYS RES-ATMOS, V108 SISKIND DE, 2005, J ATMOS SOL-TERR PHY, V67, P501 SONNEMANN GR, 2005, J ATMOS SOL-TERR PHY, V67, P177 STEVENS MH, 2001, GEOPHYS RES LETT, V28, P4449 STEVENS MH, 2003, GEOPHYS RES LETT, V30 STEVENS MH, 2005, J GEOPHYS RES-SPACE, V110 THAYER JP, 2003, J GEOPHYS RES-ATMOS, V108 THOMAS GE, 1984, J ATMOS TERR PHYS, V46, P819 THOMAS GE, 1985, PLANET SPACE SCI, V33, P1209 THOMAS GE, 1989, J GEOPHYS RES-ATMOSP, V94, P14673 THOMAS GE, 1989, NATURE, V338, P490 THOMAS GE, 1991, J GEOPHYS RES-ATMOSP, V96, P927 THOMAS GE, 1991, REV GEOPHYS, V29, P553 THOMAS GE, 1995, GEOPHYS MONOGR, V87, P185 THOMAS GE, 1996, J ATMOS TERR PHYS, V58, P1629 THOMAS GE, 2000, EOS T AGU, V81, S336 THOMAS GE, 2001, ADV SPACE RES, V28, P937 THOMAS GE, 2003, ADV SPACE RES, V32, P1737 THOMAS GE, 2003, EOS T AGU, V84, P352 TURCO RP, 1982, PLANET SPACE SCI, V30, P1147 VONCOSSART G, 1999, GEOPHYS RES LETT, V26, P1513 VONSAVIGNY C, 2004, ADV SPACE RES, V34, P851 VONZAHN U, 1998, GEOPHYS RES LETT, V25, P1289 VONZAHN U, 2003, EOS T AGU, V84, P261 VONZAHN U, 2004, ATMOS CHEM PHYS, V4, P2449 WARREN SG, 1997, J GEOPHYS RES-ATMOS, V102, P1991 WEATHERHEAD EC, 1998, J GEOPHYS RES-ATMOS, V103, P17149 WOODS TN, 2000, J GEOPHYS RES-SPACE, V105, P27195.

Abstract

Satellite observations of polar mesospheric clouds (PMCs) are extremely valuable because they typically have daily coverage to characterize seasonal variations, sufficient detections for each season to give good statistics, quantitative information for physical analysis, and coverage of both hemispheres to evaluate global behavior. Continuous spectral measurements in the ultraviolet provide information about particle size distributions. A typical PMC season begins approximately 20 days before summer solstice at 80 degrees latitude, rises rapidly in occurrence frequency to 80-90%, and remains at that level until 50-60 days after solstice. Both occurrence frequency and brightness are latitude dependent, with higher values observed toward the poles. PMCs are normally observed at altitudes of 82-83 km, with higher altitudes at the start and end of each season. Hemispheric differences in behavior are also observed. Northern Hemisphere PMCs are consistently both more frequent and brighter than Southern Hemisphere clouds. Cloud height is generally anti-correlated with cloud brightness. The availability of extended PMC data sets from satellites provides the opportunity to evaluate long-term PMC variations over the past few decades. Analysis of these lengthy data sets shows a clear anti-correlation between seasonally averaged PMC parameters (occurrence frequency and brightness) and solar UV activity over the past two solar cycles, in agreement with model predictions. A time lag of similar to 1 year between the solar cycle and the PMC response is present in several data sets (solar variation leads PMC response). The cause is unknown. Multiple regression analysis also indicates long-term increases in both occurrence frequency and brightness, although there is not yet a consensus on the magnitude of the increase. These results are compared with information about concurrent variations in plausible source mechanisms such as mesospheric water vapor and temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Tags

Users

  • @bobsica

Comments and Reviews