BibSonomy now supports HTTPS. Switch to HTTPS.
@aksw

An Efficient Approach for the Generation of Allen Relations

, , and . Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI) 2016, The Hague, 29. August - 02. September 2016, (2016)

Abstract

Event data is increasingly being represented according to the Linked Data principles. The need for large-scale machine learning on data represented in this format has thus led to the need for efficient approaches to compute RDF links between resources based on their temporal properties. Time-efficient approaches for computing links between RDF resources have been developed over the last years. However, dedicated approaches for linking resources based on temporal relations have been paid little attention to. In this paper, we address this research gap by presenting A EGLE , a novel approach for the efficient computation of links between events according to Allen's interval algebra. We study Allen's relations and show that we can reduce all thirteen relations to eights simpler relations. We then present an efficient algorithm with a complexity of O(n log n) for computing these eight relations. Our evaluation of the runtime of our algorithms shows that we outperform the state of the art by up to 4 orders of magnitude while maintaining a precision and a recall of 100\%.

Links and resources

URL:
BibTeX key:
allenalgebra
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication