Аннотация
Given a sequence of nonnegative real numbers λ0, λ1… which sum to 1, we consider random graphs having approximately λin vertices of degree i. Essentially, we show that if Σ i(i - 2)λi > 0, then such graphs almost surely have a giant component, while if Σ i(i-2)λ. < 0, then almost surely all components in such graphs are small. We can apply these results to Gn,p,Gn.M, and other well-known models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)