Artikel,

THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION

, und .
Ecological Applications, 10 (2): 423--436 (01.04.2000)
DOI: 10.1890/1051-0761(2000)010\%5B0423:tvdoso\%5D2.0.co;2

Zusammenfassung

As the largest pool of terrestrial organic carbon, soils interact strongly with atmospheric composition, climate, and land cover change. Our capacity to predict and ameliorate the consequences of global change depends in part on a better understanding of the distributions and controls of soil organic carbon (SOC) and how vegetation change may affect SOC distributions with depth. The goals of this paper are (1) to examine the association of SOC content with climate and soil texture at different soil depths; (2) to test the hypothesis that vegetation type, through patterns of allocation, is a dominant control on the vertical distribution of SOC; and (3) to estimate global SOC storage to 3 m, including an analysis of the potential effects of vegetation change on soil carbon storage. We based our analysis on >2700 soil profiles in three global databases supplemented with data for climate, vegetation, and land use. The analysis focused on mineral soil layers. Plant functional types significantly affected the vertical distribution of SOC. The percentage of SOC in the top 20 cm (relative to the first meter) averaged 33\%, 42\%, and 50\% for shrublands, grasslands, and forests, respectively. In shrublands, the amount of SOC in the second and third meters was 77\% of that in the first meter; in forests and grasslands, the totals were 56\% and 43\%, respectively. Globally, the relative distribution of SOC with depth had a slightly stronger association with vegetation than with climate, but the opposite was true for the absolute amount of SOC. Total SOC content increased with precipitation and clay content and decreased with temperature. The importance of these controls switched with depth, climate dominating in shallow layers and clay content dominating in deeper layers, possibly due to increasing percentages of slowly cycling SOC fractions at depth. To control for the effects of climate on vegetation, we grouped soils within climatic ranges and compared distributions for vegetation types within each range. The percentage of SOC in the top 20 cm relative to the first meter varied from 29\% in cold arid shrublands to 57\% in cold humid forests and, for a given climate, was always deepest in shrublands, intermediate in grasslands, and shallowest in forests (P < 0.05 in all cases). The effect of vegetation type was more important than the direct effect of precipitation in this analysis. These data suggest that shoot/root allocations combined with vertical root distributions, affect the distribution of SOC with depth. Global SOC storage in the top 3 m of soil was 2344 Pg C, or 56\% more than the 1502 Pg estimated for the first meter (which is similar to the total SOC estimates of 1500–1600 Pg made by other researchers). Global totals for the second and third meters were 491 and 351 Pg C, and the biomes with the most SOC at 1–3 m depth were tropical evergreen forests (158 Pg C) and tropical grasslands/savannas (146 Pg C). Our work suggests that plant functional types, through differences in allocation, help to control SOC distributions with depth in the soil. Our analysis also highlights the potential importance of vegetation change and SOC pools for carbon sequestration strategies.

Tags

Nutzer

  • @karinawilliams

Kommentare und Rezensionen