A Heuristic Variable Grid Solution Method for POMDPs

. Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97), page 76--81. Providence, Rhode Island, AAAI Press / MIT Press, (1997)


Partially observable Markov decision processes (POMDPs) are an appealing tool for modeling planning problems under uncertainty. They incorporate stochastic action and sensor descriptions and easily capture goal oriented and process oriented tasks. Unfortunately, POMDPs are very difficult to solve. Exact methods cannot handle problems with much more than 10 states, so approximate methods must be used. In this paper, we describe a simple variable-grid solution method which yields good results on...



Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication