Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Journal Article
%1 Schleicher2023AdhPred
%A Schleicher, Miro
%A Unnikrishnan, Vishnu
%A Pryss, Rüdiger
%A Schobel, Johannes
%A Schlee, Winfried
%A Spiliopoulou, Myra
%D 2023
%I Elsevier BV
%J Artificial Intelligence in Medicine
%K Adherence Chronic_diseases Law_of_attrition Time_series_with_gaps mHealth
%P 102575
%R 10.1016/j.artmed.2023.102575
%T Prediction meets time series with gaps: User clusters with specific usage behavior patterns
%U https://doi.org/10.1016%2Fj.artmed.2023.102575
@article{Schleicher2023AdhPred,
added-at = {2023-05-03T10:55:10.000+0200},
author = {Schleicher, Miro and Unnikrishnan, Vishnu and Pryss, Rüdiger and Schobel, Johannes and Schlee, Winfried and Spiliopoulou, Myra},
biburl = {https://www.bibsonomy.org/bibtex/2fbff8528916f9627abfa57636e42d542/kmd-ovgu},
doi = {10.1016/j.artmed.2023.102575},
interhash = {83b19069a2262344e05d36830a983e52},
intrahash = {fbff8528916f9627abfa57636e42d542},
journal = {Artificial Intelligence in Medicine},
keywords = {Adherence Chronic_diseases Law_of_attrition Time_series_with_gaps mHealth},
month = may,
pages = 102575,
publisher = {Elsevier {BV}},
timestamp = {2023-05-03T10:55:10.000+0200},
title = {Prediction meets time series with gaps: User clusters with specific usage behavior patterns},
url = {https://doi.org/10.1016%2Fj.artmed.2023.102575},
year = 2023
}