Zusammenfassung

This paper presents unifying results for subspace identification (SID) and dynamic mode decomposition (DMD) for autonomous dynamical systems. We observe that SID seeks to solve an optimization problem to estimate an extended observability matrix and a state sequence that minimizes the prediction error for the state-space model. Moreover, we observe that DMD seeks to solve a rank-constrained matrix regression problem that minimizes the prediction error of an extended autoregressive model. We prove that existence conditions for perfect (error-free) state-space and low-rank extended autoregressive models are equivalent and that the SID and DMD optimization problems are equivalent. We exploit these results to propose a SID-DMD algorithm that delivers a provably optimal model and that is easy to implement. We demonstrate our developments using a case study that aims to build dynamical models directly from video data.

Links und Ressourcen

URL:
http://arxiv.org/abs/2003.07410
BibTeX-Schlüssel:
shin2020unifying
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation