\NCBI\ Disease Corpus: A Resource for Disease Name Recognition and Concept Normalization
, , and .
Journal of Biomedical Informatics (2014)

Abstract Information encoded in natural language in biomedical literature publications is only useful if efficient and reliable ways of accessing and analyzing that information are available. Natural language processing and text mining tools are therefore essential for extracting valuable information, however, the development of powerful, highly effective tools to automatically detect central biomedical concepts such as diseases is conditional on the availability of annotated corpora. This paper presents the disease name and concept annotations of the \NCBI\ disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency. The public release of the \NCBI\ disease corpus contains 6,892 disease mentions, which are mapped to 790 unique disease concepts. Of these, 88% link to a MeSH identifier, while the rest contain an ØMIM\ identifier. We were able to link 91% of the mentions to a single disease concept, while the rest are described as a combination of concepts. In order to help researchers use the corpus to design and test disease identification methods, we have prepared the corpus as training, testing and development sets. To demonstrate its utility, we conducted a benchmarking experiment where we compared three different knowledge-based disease normalization methods with a best performance in F-measure of 63.7%. These results show that the \NCBI\ disease corpus has the potential to significantly improve the state-of-the-art in disease name recognition and normalization research, by providing a high-quality gold standard thus enabling the development of machine-learning based approaches for such tasks. The \NCBI\ disease corpus, guidelines and other associated resources are available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/.
  • @diverzulu
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).