Abstract

We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network 23 but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch 2 to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering 22 and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.

Links and resources

BibTeX key:
Sukhbaatar2015EndToEndMN
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication