Abstract

We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be 2 p/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and p...

Description

Polarization Locked Vector Solitons and Axis Instability in Optical Fiber

Links and resources

Tags