@kirk86

Rates of Convergence for Sparse Variational Gaussian Process Regression

, , and . Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, page 862--871. Long Beach, California, USA, PMLR, (09--15 Jun 2019)

Abstract

Excellent variational approximations to Gaussian process posteriors have been developed which avoid the $Ołeft(N^3\right)$ scaling with dataset size $N$. They reduce the computational cost to $Ołeft(NM^2\right)$, with $MN$ the number of inducing variables, which summarise the process. While the computational cost seems to be linear in $N$, the true complexity of the algorithm depends on how $M$ must increase to ensure a certain quality of approximation. We show that with high probability the KL divergence can be made arbitrarily small by growing $M$ more slowly than $N$. A particular case is that for regression with normally distributed inputs in D-dimensions with the Squared Exponential kernel, $M=O(łog^D N)$ suffices. Our results show that as datasets grow, Gaussian process posteriors can be approximated cheaply, and provide a concrete rule for how to increase $M$ in continual learning scenarios.

Description

Rates of Convergence for Sparse Variational Gaussian Process Regression

Links and resources

Tags

community

  • @kirk86
  • @dblp
@kirk86's tags highlighted