@becker

Characterizing User Behavior in Online Social Networks

, , , and . Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, page 49--62. New York, NY, USA, ACM, (2009)

Abstract

Understanding how users behave when they connect to social networking sites creates opportunities for better interface design, richer studies of social interactions, and improved design of content distribution systems. In this paper, we present a first of a kind analysis of user workloads in online social networks. Our study is based on detailed clickstream data, collected over a 12-day period, summarizing HTTP sessions of 37,024 users who accessed four popular social networks: Orkut, MySpace, Hi5, and LinkedIn. The data were collected from a social network aggregator website in Brazil, which enables users to connect to multiple social networks with a single authentication. Our analysis of the clickstream data reveals key features of the social network workloads, such as how frequently people connect to social networks and for how long, as well as the types and sequences of activities that users conduct on these sites. Additionally, we crawled the social network topology of Orkut, so that we could analyze user interaction data in light of the social graph. Our data analysis suggests insights into how users interact with friends in Orkut, such as how frequently users visit their friends' or non-immediate friends' pages. In summary, our analysis demonstrates the power of using clickstream data in identifying patterns in social network workloads and social interactions. Our analysis shows that browsing, which cannot be inferred from crawling publicly available data, accounts for 92\% of all user activities. Consequently, compared to using only crawled data, considering silent interactions like browsing friends' pages increases the measured level of interaction among users.

Links and resources

URL:
BibTeX key:
benevenuto2009characterizing
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication