@achakraborty

Move Evaluation in Go Using Deep Convolutional Neural Networks

, , , and . (2014)cite arxiv:1412.6564Comment: Minor edits and included captures in Figure 2.

Abstract

The game of Go is more challenging than other board games, due to the difficulty of constructing a position or move evaluation function. In this paper we investigate whether deep convolutional networks can be used to directly represent and learn this knowledge. We train a large 12-layer convolutional neural network by supervised learning from a database of human professional games. The network correctly predicts the expert move in 55% of positions, equalling the accuracy of a 6 dan human player. When the trained convolutional network was used directly to play games of Go, without any search, it beat the traditional search program GnuGo in 97% of games, and matched the performance of a state-of-the-art Monte-Carlo tree search that simulates a million positions per move.

Description

[1412.6564] Move Evaluation in Go Using Deep Convolutional Neural Networks

Links and resources

URL:
BibTeX key:
maddison2014evaluation
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication