Abstract

At present tagging is experimenting a great diffusion as the most adopted way to collaboratively classify resources over the Web. In this paper, after a detailed analysis of the attempts made to improve the organization and structure of tagging systems as well as the usefulness of this kind of social data, we propose and evaluate the Tag Disambiguation Algorithm, mining del.icio.us data. It allows to easily semantify the tags of the users of a tagging service: it automatically finds out for each tag the related concept of Wikipedia in order to describe Web resources through senses. On the basis of a set of evaluation tests, we analyze all the advantages of our sense-based way of tagging, proposing new methods to keep the set of users tags more consistent or to classify the tagged resources on the basis of Wikipedia categories, YAGO classes or Wordnet synsets. We discuss also how our semanitified social tagging data are strongly linked to DBPedia and the datasets of the Linked Data community.

Description

In this paper, after a detailed analysis of the attempts made to improve the organization and structure of tagging systems as well as the usefulness of this kind of social data, we propose and evaluate the Tag Disambiguation Algorithm, mining del.icio.us data.

Links and resources

URL:
BibTeX key:
taggingsem08
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication