@iswc2007

An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations

, , , and . Proceedings of the 6th International Semantic Web Conference and 2nd Asian Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS, page 673--686. Berlin, Heidelberg, Springer Verlag, (November 2007)

Abstract

This paper deals with the problem of exploring hierarchical semantics from social annotations. Recently, social annotation services have become more and more popular in Semantic Web. It allows users to arbitrarily annotate web resources, thus, largely lowers the barrier to cooperation. Furthermore, through providing abundant meta-data resources, social annotation might become a key to the development of Semantic Web. However, on the other hand, social annotation has its own apparent limitations, for instance, 1) ambiguity and synonym phenomena and 2) lack of hierarchical information. In this paper, we propose an unsupervised model to automatically derive hierarchical semantics from social annotations. Using a social bookmark service Del.icio.us as example, we demonstrate that the derived hierarchical semantics has the ability to compensate those shortcomings. We further apply our model on another data set from Flickr to testify our model's applicability on different environments. The experimental results demonstrate our model's effciency.

Links and resources

URL:
BibTeX key:
Zhou/2007/Unsupervised
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication