@lambris

A functional C5a anaphylatoxin receptor in a teleost species.

, and . Journal of Immunology, 172 (1): 349--355 (January 2004)

Abstract

The anaphylatoxins are potent, complement-derived low m.w. proteins that bind to specific seven-transmembrane receptors to elicit and amplify a variety of inflammatory reactions. C5a is the most potent of these phlogistic peptides and is a strong chemoattractant for neutrophils and macrophages/monocytes. Although lower vertebrates possess complement systems that are believed to function similarly to those of mammals, anaphylatoxin receptors have not previously been characterized in any nonmammalian vertebrate. To study the functions of C5a in teleost fish, we generated recombinant C5a of the rainbow trout, Oncorhynchus mykiss (tC5a), and used fluoresceinated tC5a (tC5aF) and flow cytometry to identify the C5a receptor (C5aR) on trout leukocytes. Granulocytes/Macrophages present in cell suspensions of the head kidney (HKL), the main hemopoietic organ in teleosts, showed a univariate type of receptor expression, whereas those from the peripheral blood demonstrated either a low or high level of expression. The binding of tC5aF was inhibited by excess amounts of unlabeled tC5a or tC5a(desArg), demonstrating that sites other than the C-terminal of tC5a interact with the C5aR. Both tC5a and tC5a(desArg) were able to induce chemotactic responses in granulocytes in a concentration-dependent manner, but the desArg derivative was at least 10-fold less active. Homologous desensitization occurred after HKL were exposed to continuous or high concentrations of tC5a, with a loss of tC5aF binding and an 80% reduction in chemotactic responses toward tC5a. Pertussis toxin reduced the migration of HKL toward tC5a by 40%, suggesting only a partial involvement of pertussis toxin-sensitive G(i) proteins in tC5a-mediated chemotaxis.

Links and resources

Tags