Аннотация

A monitoring system is proposed to detect violent content in Arabic social media. This is a new and challenging task due to the presence of various Arabic dialects in the social media and the non-violent context where violent words might be used. We proposed to use a probabilistic nonlinear dimensionality reduction technique called sparse Gaussian process latent variable model (SGPLVM) followed by k-means to separate violent from non-violent content. This framework does not require any labelled corpora for training. We show that violent and non-violent Arabic tweets are not separable using k-means in the original high dimensional space, however better results are achieved by clustering in low dimensional latent space of SGPLVM.

Линки и ресурсы

URL:
дополнительные URL-адреса:
ключ BibTeX:
dhinaharannagamalai2017unsupervised
искать в:

Комментарии и рецензии  
(0)

Комментарии, или рецензии отсутствуют. Вы можете их написать!

Tags


Цитировать эту публикацию