Abstract

Author summary Although the genetics of trait differences between crops and their progenitors has been extensively studied, far less is known about the genetic architecture of trait variation in crop progenitors and how this architecture was altered during domestication. Here, we address this issue by comparing the genetic architecture of 18 domestication traits in maize and its ancestor teosinte using matched populations. Our results show that genetic architecture was reshaped during domestication in multiple ways. Maize has a greatly reduced number of QTL for domestication traits relative to teosinte and alleles at these QTL show greater dominance in maize. QTL alleles of large effect are present in both maize and teosinte, but more common in maize. We observed that regions of the genome that are strongly differentiated between teosinte and maize (high FST) explain less additive variation in maize than teosinte and that genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. Finally, we observed that about 75% of heritability is “missing” in the sense that it not associated with detectable QTL, which suggests that the raw material for domestication was largely composed of vast numbers of QTL of diminishingly small effects.

Links and resources

Tags