@artheibault

Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis

, and . PLOS Genetics 3 (9): e161 (September 2007)

Abstract

It has unambiguously been shown that genetic, environmental, demographic, and technical factors may have substantial effects on gene expression levels. In addition to the measured variable(s) of interest, there will tend to be sources of signal due to factors that are unknown, unmeasured, or too complicated to capture through simple models. We show that failing to incorporate these sources of heterogeneity into an analysis can have widespread and detrimental effects on the study. Not only can this reduce power or induce unwanted dependence across genes, but it can also introduce sources of spurious signal to many genes. This phenomenon is true even for well-designed, randomized studies. We introduce “surrogate variable analysis” (SVA) to overcome the problems caused by heterogeneity in expression studies. SVA can be applied in conjunction with standard analysis techniques to accurately capture the relationship between expression and any modeled variables of interest. We apply SVA to disease class, time course, and genetics of gene expression studies. We show that SVA increases the biological accuracy and reproducibility of analyses in genome-wide expression studies.

Description

This article describes surrogate variable analysis (SVA). Kaushal et al. used SVA as one of their cell-type correction methods, where it was found to be the most reliable of the reference-free methods.

Links and resources

URL:
BibTeX key:
leek2007capturing
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication