@kirk86

A New Lower Bound for Agnostic Learning with Sample Compression Schemes

, and . (2018)cite arxiv:1805.08140.

Abstract

We establish a tight characterization of the worst-case rates for the excess risk of agnostic learning with sample compression schemes and for uniform convergence for agnostic sample compression schemes. In particular, we find that the optimal rates of convergence for size-$k$ agnostic sample compression schemes are of the form $\frack łog(n/k)n$, which contrasts with agnostic learning with classes of VC dimension $k$, where the optimal rates are of the form $\frackn$.

Description

[1805.08140] A New Lower Bound for Agnostic Learning with Sample Compression Schemes

Links and resources

URL:
BibTeX key:
hanneke2018lower
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication