@jaksonmv

Multiscale study of dynamic void collapse in single crystals

, , , and . Mechanics of Materials, 37 (2-3): 317--330 (2005)

Abstract

Molecular dynamics calculations were performed using embedded atom method (EAM) potentials to study the localization of inelastic flow and crack initiation in fcc single crystal copper and nickel. We compared the atomic scale anisotropic inelastic response of the copper single crystals from EAM to the results of Philos. Mag. 78(5) (1998) 1151 (experiments and finite element results using single crystal plasticity). Hollow circular cylinders of single crystals were loaded radially with a constant average velocity at a strain rate of 109s-1, inducing the collapse of the cylinder. Various initial orientations of the lattice are examined to study the localization of flow and crack initiation. Comparisons between EAM, experiments, and finite element simulations were in good agreement with each other illustrating that kinematic and localization effects are invariant to extremely large spatial and temporal regimes. Finally, similar dislocation nucleation patterns, localization sites, and crack initiation sites were observed when comparing copper to nickel.

Links and resources

Tags