Abstract

Designing convolutional neural networks (CNN) models for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant effort has been dedicated to design and improve mobile models on all three dimensions, it is challenging to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated neural architecture search approach for designing resource-constrained mobile CNN models. We propose to explicitly incorporate latency information into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike in previous work, where mobile latency is considered via another, often inaccurate proxy (e.g., FLOPS), in our experiments, we directly measure real-world inference latency by executing the model on a particular platform, e.g., Pixel phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that permits layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our model achieves 74.0\% top-1 accuracy with 76ms latency on a Pixel phone, which is 1.5x faster than MobileNetV2 (Sandler et al. 2018) and 2.4x faster than NASNet (Zoph et al. 2018) with the same top-1 accuracy. On the COCO object detection task, our model family achieves both higher mAP quality and lower latency than MobileNets.

Links and resources

Tags