@analyst

Semi and Weakly Supervised Semantic Segmentation Using Generative Adversarial Network

, , and . (2017)cite arxiv:1703.09695.

Abstract

Semantic segmentation has been a long standing challenging task in computer vision. It aims at assigning a label to each image pixel and needs significant number of pixellevel annotated data, which is often unavailable. To address this lack, in this paper, we leverage, on one hand, massive amount of available unlabeled or weakly labeled data, and on the other hand, non-real images created through Generative Adversarial Networks. In particular, we propose a semi-supervised framework ,based on Generative Adversarial Networks (GANs), which consists of a generator network to provide extra training examples to a multi-class classifier, acting as discriminator in the GAN framework, that assigns sample a label y from the K possible classes or marks it as a fake sample (extra class). The underlying idea is that adding large fake visual data forces real samples to be close in the feature space, enabling a bottom-up clustering process, which, in turn, improves multiclass pixel classification. To ensure higher quality of generated images for GANs with consequent improved pixel classification, we extend the above framework by adding weakly annotated data, i.e., we provide class level information to the generator. We tested our approaches on several challenging benchmarking visual datasets, i.e. PASCAL, SiftFLow, Stanford and CamVid, achieving competitive performance also compared to state-of-the-art semantic segmentation method

Description

1703.09695.pdf

Links and resources

URL:
BibTeX key:
souly2017weakly
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication