@thoni

A Word at a Time: Computing Word Relatedness Using Temporal Semantic Analysis

, , , and . WWW, page 337--346. New York, NY, USA, ACM, (2011)

Abstract

Computing the degree of semantic relatedness of words is a key functionality of many language applications such as search, clustering, and disambiguation. Previous approaches to computing semantic relatedness mostly used static language resources, while essentially ignoring their temporal aspects. We believe that a considerable amount of relatedness information can also be found in studying patterns of word usage over time. Consider, for instance, a newspaper archive spanning many years. Two words such as "war" and "peace" might rarely co-occur in the same articles, yet their patterns of use over time might be similar. In this paper, we propose a new semantic relatedness model, Temporal Semantic Analysis (TSA), which captures this temporal information. The previous state of the art method, Explicit Semantic Analysis (ESA), represented word semantics as a vector of concepts. TSA uses a more refined representation, where each concept is no longer scalar, but is instead represented as time series over a corpus of temporally-ordered documents. To the best of our knowledge, this is the first attempt to incorporate temporal evidence into models of semantic relatedness. Empirical evaluation shows that TSA provides consistent improvements over the state of the art ESA results on multiple benchmarks.

Description

A word at a time

Links and resources

DOI:
10.1145/1963405.1963455
URL:
BibTeX key:
radinsky2011computing
search on:

Comments and Reviews  
(0)

There is no review or comment yet. You can write one!

Tags


Cite this publication