@skoerbel

Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

, , , , , , , , , , and . Nature communications, (2015)

Abstract

Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.

Description

- References 1,12,13,14,15,16 are about strong light-matter interaction in 2D TMDs. Look them up and maybe cite in Introduction. - photocurrent (PC) and PL spectra. PC spectra of bilayer are shifted down wrt ML - pump-probe spectroscopy - Band structures of the heterobilayer. Direct gap (coherent stacking) becomes indirect upon rotation

Links and resources

Tags