E394 in the Enestrom index. Translated from the Latin original, "De partitione numerorum in partes tam numero quam specie datas" (1768). Euler finds a lot of recurrence formulas for the number of partitions of \$N\$ into \$n\$ parts from some set like 1 to 6 (numbers on the sides of a die). He starts the paper talking about how many ways a number \$N\$ can be formed by throwing \$n\$ dice. There do not seem to be any new results or ideas here that weren't in Öbservationes analyticae variae de combinationibus", E158 and "De partitione numerorum", E191. In this paper Euler just does a lot of special cases. My impression is that Euler is trying to make his theory of partitions more approachable,. Also, maybe for his own benefit he wants to say it all again in different words, to make it clear.


my bookmarks from citeulike

Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication