Predicting the Performance of Collaborative Filtering Algorithms

P. Matuszyk, and M. Spiliopoulou. Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14) , page 38:1--38:6. New York, NY, USA, ACM, (2014)


Collaborative Filtering algorithms are widely used in recommendation engines, but their performance varies widely. How to predict whether collaborative filtering is appropriate for a specific recommendation environment without running the algorithm on the dataset, nor designing experiments? We propose a method that estimates the expected performance of CF algorithms by analysing only the dataset statistics. In particular, we introduce measures that quantify the dataset properties with respect to user co-ratings, and we show that these measures predict the performance of collaborative filtering on the dataset, when trained on a small number of benchmark datasets.

Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication