Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches
International Journal of Advanced Computer Science and Applications(IJACSA) (2012)

This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short-time signal energy, short-time average zero crossing rate and the frequency-domain features, such as spectral centroid and spectral flux features are extracted in this research work. After the feature sequences are extracted, a simple dynamic thresholding criterion is applied in order to detect the word boundaries and label the entire speech sentence into a sequence of words/sub-words. All the algorithms used in this research are implemented in Matlab and the implemented automatic speech segmentation system achieved segmentation accuracy of 96\%.
  • @thesaiorg
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).