Article,

Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods

, , , , , , , , , , , , , , , , and .
Computer Physics Communications, (2020)
DOI: https://doi.org/10.1016/j.cpc.2019.107110

Abstract

Nektar++ is an open-source framework that provides a flexible, high-performance and scalable platform for the development of solvers for partial differential equations using the high-order spectral/hp element method. In particular, Nektar++ aims to overcome the complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including our strategies on parallel I/O, on in situ processing, the use of collective operations for exploiting current and emerging hardware, and interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enables a more rapid introduction for new users unfamiliar with spectral/hp element methods, C++ and/or Nektar++. This release also incorporates a number of numerical method developments – in particular: the method of moving frames (MMF), which provides an additional approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral element and 1D Fourier spectral method) to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a novel new AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling of fluid–structure interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We conclude by commenting on some lessons learned and by discussing some directions for future code development and expansion. Program summary Program Title: Nektar++ Program Files doi: http://dx.doi.org/10.17632/9drxd9d8nx.1 Code Ocean Capsule: https://doi.org/10.24433/CO.9865757.v1 Licensing provisions: MIT Programming language: C++ External routines/libraries: Boost, METIS, FFTW, MPI, Scotch, PETSc, TinyXML, HDF5, OpenCASCADE, CWIPI Nature of problem: The Nektar++ framework is designed to enable the discretisation and solution of time-independent or time-dependent partial differential equations. Solution method: spectral/hp element method

Tags

Users

  • @dblp
  • @gdmcbain

Comments and Reviewsshow / hide

  • @gdmcbain
    3 years ago (last updated 3 years ago)
Please log in to take part in the discussion (add own reviews or comments).