Article,

Sine-Gordon soliton as a model for Hawking radiation of moving black holes and quantum soliton evaporation

, , , and .
Journal of Physics Communications, 2 (5): 055016 (2018)

Abstract

The intriguing connection between black holes’ evaporation and physics of solitons is opening novel roads to finding observable phenomena. It is known from the inverse scattering transform that velocity is a fundamental parameter in solitons theory. Taking this into account, the study of Hawking radiation by a moving soliton gets a growing relevance. However, a theoretical context for the description of this phenomenon is still lacking. Here, we adopt a soliton geometrization technique to study the quantum emission of a moving soliton in a one-dimensional model. Representing a black hole by the one soliton solution of the Sine-Gordon equation, we consider Hawking emission spectra of a quantized massless scalar field on the soliton-induced metric. We study the relation between the soliton velocity and the black hole temperature. Our results address a new scenario in the detection of new physics in the quantum gravity panorama.

Tags

Users

  • @nonlinearxwaves

Comments and Reviews