Article,

Recent advances in the in vitro cultivation and genetic manipulation of Echinococcus multilocularis metacestodes and germinal cells

, and .
Experimental Parasitology, 119 (4): 506--515 (August 2008)PMID: 18439582.
DOI: 10.1016/j.exppara.2008.03.007

Abstract

In order to elucidate host-parasite interactions and infection strategies of helminths at the molecular level, the availability of suitable in vitro cultivation systems for this group of parasites is of vital importance. One of the few helminth systems for which in vitro cultivation has been relatively successfully carried out in the past is the larval stage of the fox-tapeworm Echinococcus multilocularis, the causative agent of alveolar echinococcosis. Respective 'first generation' cultivation systems relied on the co-incubation of larval tissue, isolated from laboratory rodents, with host feeder cells. Although these techniques have been very successful in producing metacestode material for drug screening assays or the establishment of cDNA libraries, the continuous presence of host cells prevented detailed studies on the influence of defined host factors on larval growth. To facilitate such investigations, we have recently introduced the first truly axenic system for long-term in vitro maintenance of metacestode vesicles and used it to establish a technique for parasite cell cultivation. The resulting culture system, which allows the complete in vitro regeneration of metacestode vesicles from germinal cells, is a highly useful tool to study the cellular and molecular basis of a variety of developmental processes that occur during the infection of the mammalian host. Furthermore, it provides a solid basis for establishing transgenic techniques in cestodes for the first time. We consider it an appropriate time point to discuss the characteristics of these 'second generation' cultivation systems in comparison with former techniques, to present our first successful attempts to introduce foreign DNA into Echinococcus cells, and to share our ideas on how a fully transgenic Echinococcus strain can be generated in the near future.

Tags

Users

  • @hymi

Comments and Reviews