Nonlinear Discontinuous Petrov–Galerkin Methods
, , , and .
(2018)

The discontinuous Petrov-Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear mod el problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.
  • @dblp
  • @gdmcbain
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).