International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol 1 (Num 6): 1-10 (December 2011)

Thresholding is a fast, popular and computationally inexpensive segmentation technique that is always critical and decisive in some image processing applications. The result of image thresholding is not always satisfactory because of the presence of noise and vagueness and ambiguity among the classes. Since the theory of fuzzy sets is a generalization of the classical set theory, it has greater flexibility to capture faithfully the various aspects of incompleteness or imperfectness in information of situation. To overcome this problem, in this paper we proposed a two-stage fuzzy set theoretic approach to image thresholding utilizing the measure of fuzziness to evaluate the fuzziness of an image and to determine an adequate threshold value. At first, images are preprocessed to reduce noise without any loss of image details by fuzzy rule-based filtering and then in the final stage a suitable threshold is determined with the help of a fuzziness measure as a criterion function. Experimental results on test images have demonstrated the effectiveness of this method
  • @cathenna
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).