A Projector-Embedding Approach for Multiscale Coupled-Cluster Calculations Applied to Citrate Synthase
, , , , , and .
Journal of Chemical Theory and Computation 12 (6): 2689-2697 (2016)PMID: 27159381.

Projector-based embedding has recently emerged as a robust multiscale method for the calculation of various electronic molecular properties. We present the coupling of projector embedding with quantum mechanics/molecular mechanics modeling and apply it for the first time to an enzyme-catalyzed reaction. Using projector-based embedding, we combine coupled-cluster theory, density-functional theory (DFT), and molecular mechanics to compute energies for the proton abstraction from acetyl-coenzyme A by citrate synthase. By embedding correlated ab initio methods in DFT we eliminate functional sensitivity and obtain high-accuracy profiles in a procedure that is straightforward to apply.
  • @sasha-markov
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).