Gegenbauer Tau Methods With and Without Spurious Eigenvalues
, and .
SIAM Journal on Numerical Analysis 47 (1): 48--68 (January 2009)

It is proven that a class of Gegenbauer tau approximations to a 4th order differential eigenvalue problem of hydrodynamic type provide real, negative and distinct eigenvalues, as is the case for the exact solutions. This class of Gegenbauer tau methods includes Chebyshev and Legendre Galerkin and `inviscid' Galerkin but does not include Chebyshev and Legendre tau. Rigorous and numerical results show that the results are sharp: positive or complex eigenvalues arise outside of this class. The widely used modified tau approach is proved to be equivalent to the Galerkin method.
  • @tobydriscoll
  • @gdmcbain
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).