Article,

Relative damping improves linear mass-spring models of goal-directed movements

, , and .
Human Movement Science, (2002)

Abstract

A limitation of a simple linear mass-spring model in describing goal directed movements is that it generates rather slow movements when the parameters are kept within a realistic range. Does this imply that the control of fast movements cannot be approximated by a linear system? In servo-control theory, it has been proposed that an optimal controller should control movement velocity in addition to position. Instead of explicitly controlling the velocity, we propose to modify a simple linear mass-spring model. We replaced the damping relative to the environment (absolute damping) with damping with respect to the velocity of the equilibrium point (relative damping). This gives the limb a tendency to move as fast as the equilibrium point. We show that such extremely simple models can generate rapid single-joint movements. The resulting maximal movement velocities were almost equal to those of the equilibrium point, which provides a simple mechanism for the control of movement speed. We further show that peculiar experimental results, such as an ?N-shaped? equilibrium trajectory and the difficulties to measure damping in dynamic conditions, may result from fitting a model withabsolute damping where one withrelative damping would be more appropriate. Finally, we show that the model with relative damping can be used to model subtle differences between multi-joint interceptions. The model with relative damping fits the data much better than a version of the model with absolute damping

Tags

Users

  • @butz

Comments and Reviews