The Power of Sparsity in Convolutional Neural Networks
, , and .
(2017)cite arxiv:1702.06257.

Deep convolutional networks are well-known for their high computational and memory demands. Given limited resources, how does one design a network that balances its size, training time, and prediction accuracy? A surprisingly effective approach to trade accuracy for size and speed is to simply reduce the number of channels in each convolutional layer by a fixed fraction and retrain the network. In many cases this leads to significantly smaller networks with only minimal changes to accuracy. In this paper, we take a step further by empirically examining a strategy for deactivating connections between filters in convolutional layers in a way that allows us to harvest savings both in run-time and memory for many network architectures. More specifically, we generalize 2D convolution to use a channel-wise sparse connection structure and show that this leads to significantly better results than the baseline approach for large networks including VGG and Inception V3.
  • @achakraborty
  • @loroch
  • @jk_itwm
  • @dblp
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).